Developing a Mechanistic Water Balance Model, to Predict Green Roof Performance and Efficiency

Olyssa Starry, John Lea-Cox* Andrew Ristvey and Steve Cohan

Department of Plant Science and Landscape Architecture
University of Maryland
College Park, MD

JLC@umd.edu

Our Vision

- Quantify green roof benefits within the Mid-Atlantic region, and beyond
- Provide tools to measure the efficiency of green roofs
- Increase our knowledge of green roof system performance, to inform the industry and design process

Prime Performance Objective

Quantifying Stormwater runoff

Quantifying thermal benefits

Stormwater Retention / Runoff

Quantifying Runoff

- Traditional (Curve Number) Approach
- System-based Approach

Stormwater Retention / Runoff

Q: How much stormwater is retained by a green roof? Retention by green roofs varies according to storm size

... and many other system parameters

Stormwater Retention / Runoff

Quantifying Runoff

- Expensive (especially in retrofit situations)
- Total runoff does not inform the design process

(i.e. difficult to understand which design parameters contribute most to efficiency)

⇒ Hence the advantage of modeling

Quantifying Runoff

Simple Water Balance Approach

i.e., A - B = C, where:

(A)

(B)

(C)

Rainfall (INPUT)

System - removal (δΕ_T / δt)

Runoff

So -- if we know A and B at any given time, we can predict $C = \hat{C}$

Predicting Runoff

But, we recognize that the system removal (δE_T) changes over time (δt), due to:

- Canopy coverage, leaf area
- Seasonal (species-specific) differences in transpiration rate
- Substrate physical properties
- Root density

We need to include these biological and physical parameters in the model, to ensure that predicted runoff, $\hat{C} = A - B$

SCRI-MINDS — Managing Irrigation and Nutrition via Distributed Sensing

Translating Theory into Practice

Predicting Runoff (Efficiency)

- Model Data Integration
- Tool Development

We are using a sensor network / modeling approach, which integrates the model variables, over time:

Every 5 minutes, we measure:

- 1. Rainfall [Input]
- 2 a. Temperature and Relative Humidity (=VPD)
- 2 b. Radiation (total light)
- 2 c. Wind speed

to predict plant Evapotranspiration (E_T), using a modified Penman-Monteith Equation

Every 5 minutes, we measure:

3. Substrate moisture content (VWC)

Which integrates:

- a. Amount of available water at any one time
- b. Plant water use
- c. Changes in VWC over time
 (due to changes in physical properties, increased root density, organic matter etc)

Every 5 minutes, we measure:

4. Actual Runoff (with rain gauges)

which verifies the predicted model runoff

Green Roof Experimental Site (2010)

Green Roof Experimental Site (2011)

Three Sedum Species:

- S. album
- S. kamtschaticum
- S. sexangulare

Control:

No plants (M2 substrate)

Randomized Complete Block Design:

• (4 replicates)

Wireless Sensor Network Data:

SCRI-MINDS — Managing Irrigation and Nutrition via Distributed Sensing

Data Integration into Sensorweb Tool

Model Verification (2011)

Sedum album Moisture content

Further Development / Issues

• Model Refinement:

- Slope, perhaps aspect component
- Changes in substrate components over time
 - -- both biological and physical
- Lag-to peak issues with measuring actual retention (various scaling issues)

• Data Management:

- Web-based interface, customizable for individual green roofs is our immediate goal (next 12-18 months)
- Desktop application (individual managers)
- Cluster-capability (multiple green roof analysis tool)
 on the cloud

Benefits

- Cost -- relatively low-cost, low maintenance system
- Retrofit large cost benefit if this approach works, since retrofitting existing green roofs with rain gauges or flumes is costly (and painful) to get good data
- Model Approach allows for what-if scenario building and sensitivity analyses

Acknowledgements

USDA-NIFA-SCRI 2009-51181-05768

David Kohanbash, George Kantor Carnegie-Mellon University

Bruk Belayneh, Clark de Long Kelsey Farrish, Roy Crihfield

